Assignment 11

Deadline: April 13, 2018.

Hand in: 9.1 no. 8, 13, Suppl. Ex. no 1a, 3ad.

Section 9.1: 8, 9, 11, 13

Supplementary Exercise

You should use the new definition of exponential, logarithmic, cosine and sine functions in the following problems.

- 1. Establish the following properties of the exponential and log functions: For every $\alpha > 0$,
 - (a) $\lim_{x \to \infty} \frac{x^{\alpha}}{e^{x}} = 0 ,$ (b) $\lim_{x \to -\infty} |x|^{\alpha} e^{x} = 0 ,$ (c) $\lim_{x \to \infty} \frac{\log x}{|x|^{\alpha}} = 0 ,$ (d) $\lim_{x \to 0} |x|^{\alpha} \log |x| = 0 .$
- 2. Establish the following properties of the cosine and sine functions:
 - (a) $\lim_{x \to 0} \frac{\sin x}{x} = 1 ,$ (b) $\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} ,$
- 3. Study the improper integrability of the following integrals:
 - (a) $\int_{0}^{1} x^{-1/4} \log x \, dx,$ (b) $\int_{0}^{1} \frac{(1 - \cos x) \log x}{x^{2}} \, dx ,$

(c)

$$\int_0^\infty \frac{\sin x}{e^x - 1} \, dx \, dx$$

(d) Optional.

$$\int_0^\infty \frac{\sin x}{x} \, dx \; .$$

- 4. Optional. Consider $\sum_{n=1}^{\infty} a_n$ and let $\sum_{n=1}^{\infty} b_n$ and $\sum_{n=1}^{\infty} c_n$ where $b_n = a_n^+$ and $c_n = a_n^-$ (so $a_n = a_n^+ a_n^-$). Show that $\sum_{n=1}^{\infty} b_n$ and $\sum_{n=1}^{\infty} c_n$ both are divergent to infinity when $\sum_{n=1}^{\infty} a_n$ is conditionally convergent.
- 5. Optional. Show that every conditionally convergent series admits a rearrangement which is divergent to infinity.